Кафедра физико-химической биологии и биотехнологии ФБМФ МФТИ
Rambler's Top100
Физтех-ПорталСхема проездаФорумCайт ИБХCайт ФМБФДругой сайт кафедрыНаписать письмо
 Разделы сайта

 Голосование
В какой форме стоит осуществлять общение 3 курса с администрацией кафедры?

лучше провести встречу, а только потом экскурсию по лабораториям
опубликовать интервью на сайте, а в ИБХ только показывать лаборатории
другое (а что именно, напишите нам в письме)

Результаты
Архив голосований
 Новость подробно
НовостьРентгеновский лазер в борьбе с сонной болезнью
опубликовано: 15.01.2013


Для рентгеновского структурного анализа белковых молекул нужны были кристаллы миллиметровых размеров. Теперь ученые научились обходиться нанокристаллами.

По оценкам Всемирной организации здравоохранения, сонной болезнью, она же - африканский трипаносомоз - в мире страдают около полумиллиона человек. На первый взгляд, это не так уж много. Скажем, малярией ежегодно заражаются от 300 до 500 миллионов человек, от 1,5 до 3 миллионов человек умирают. Но если малярия, равно как СПИД и туберкулез, постоянно находятся в центре внимания мировой общественности и, главное, фармацевтических фирм, результатом чего стало появление достаточно эффективных лекарственных препаратов, то сонная болезнь входит в основной перечень так называемых "забытых болезней" ВОЗ. Имеются в виду инфекционные и паразитарные тропические заболевания, поражающие преимущественно беднейшие слои населения в наиболее отсталых странах. Разработка средств борьбы с этими недугами значительных прибылей не сулит, а потому фармацевтические фирмы особого рвения тут не проявляют.

Между тем, сонная болезнь зарегистрирована в 36 странах Африки к югу от Сахары. Она вызывается простейшими вида Trypanosoma brucei, переносчиками которых служит муха цеце. Этот вид трипаносомы представлен тремя подвидами, один из которых инфицирует только животных, а два других - и человека. В зависимости от подвида возбудителя принято говорить о двух формах сонной болезни - гамбийской и родезийской: первая встречается в западной и центральной частях континента, вторая - в восточной.

Помимо этиологии, формы эти несколько различаются по симптоматике и течению болезни, однако общее для них то, что паразит, попав в организм, активно размножается, проникает в ткани, кровь, лимфу, а со временем преодолевает гематоэнцефалический барьер и поражает центральную нервную систему, так что без должного лечения уже лет через пять после заражения практически неизбежно наступает смерть.

Некоторые белковые молекулы не желают кристаллизоваться

И вот теперь группа немецких и американских исследователей предложила новый подход к разработке лекарства против сонной болезни. В основе подхода - использование метода рентгеновской кристаллографии для структурного анализа ферментов. Как известно, ферменты - это биокатализаторы, и без них обмен веществ в организме был бы практически невозможен.

Но чтобы понять, как тот или иной фермент функционирует, а тем более, чтобы целенаправленно повлиять на этот механизм, необходимо знать пространственную структуру молекулы фермента. Для построения трехмерных моделей сложных белковых моделей исследователи используют рентгеновскую кристаллографию. "Нам нужны рентгеновское излучение и кристаллы, - говорит Кристиан Бецель (Christian Betzel), профессор кафедры биохимии и молекулярной биологии Гамбургского университета. - Маленькие кристаллы, поперечником в миллиметр или даже несколько меньше".

Кристалл играет роль дифракционной решетки: пучок рентгеновских лучей рассеивается на атомах, для измерения интенсивности и направления этого отраженного излучения служит рентгеновский дифрактометр. В результате формируется изображение, которое и позволяет исследователям судить о пространственной структуре биокристалла, а значит, и о механизме действия лежащей в его основе биомолекулы.

Проблема лишь в том, что вырастить кристаллы миллиметровых размеров удается отнюдь не из любого белка. В частности, очень плохо поддаются кристаллизации и молекулы фермента, жизненно важного для возбудителя сонной болезни. Профессор Бецель поясняет: "Мы изучаем этот фермент вот уже 6 лет, потому что он играет ключевую роль в организме паразита, с которым мы хотим покончить. Если этот фермент отсутствует, паразит нежизнеспособен. Значит, вещество, блокирующее этот фермент, может стать основой для эффективного средства борьбы с трипаносомой. Но чтобы найти такое вещество, мы должны знать структуру молекулы этого фермента во всех деталях".

Главная трудность - выявить различия между сходными ферментами

Дело осложняется тем, что и в организме человека присутствует фермент, очень похожий на фермент трипаносомы. Ясно, что будущий лекарственный препарат должен блокировать исключительно фермент паразита, а не сходный с ним фермент человека, а потому выявление различий между этими ферментами обретает особое значение.

Поскольку же из этих ферментов удалось вырастить лишь мельчайшие нанокристаллы, для их структурного анализа исследователям пришлось воспользоваться самым мощным в мире рентгеновским лазером на свободных электронах, расположенным в Стэнфорде, штат Калифорния. Ларс Редеке (Lars Redecke), коллега профессора Бецеля, говорит: "Лазерный импульс высокой энергии, попадая в кристалл, мгновенно его уничтожает. Кристалл испаряется, исчезает, но дифракционная картинка успевает сформироваться до этого, и мы успеваем ее зарегистрировать".

Эти процессы протекают с немыслимой скоростью: между попаданием лазерного импульса в кристалл и разрушением кристалла проходит 50 квадриллионных долей секунды, но рентгеновская дифрактограмма готова уже через 10 квадриллионных долей секунды. Но дело, естественно, не ограничилось одной дифрактограммой, говорит Ларс Редеке: "Нам понадобилось очень-очень много кристаллов - примерно миллиард. От каждого из них мы получили рентгеновскую дифрактограмму, и потом компьютер на этой основе выдал нам ту самую пространственную структуру, за которой мы и охотились".

Этот инновационный метод изучения структуры миниатюрных биокристаллов вошел в десятку наиболее выдающихся научных исследований минувшего года по версии журнала Science. Но как скоро он приведет к созданию эффективного средства против сонной болезни, профессор Бецель пока сказать не может: "Мы закладываем основы. Через несколько лет дело дойдет, наверное, до опытов на животных. Возможно, это позволит найти подходящее биологически активное вещество - основу будущего препарата. Нам предстоит пройти долгий путь, но первый шаг в нужном направлении мы уже сделали".

По материалам сайта www.dw.de



  Новости
В США испытывают вакцину от кокаина
Обнаружены новые механизмы внутриклеточных процессов
Ученые нашли причину сезонных эпидемий гриппа
Нобелевская премия по физиологии и медицине — 2008
Химики преодолели главное препятствие на пути к абиогенному синтезу РНК
Новый фермент поможет в лечении рака
Пластиковые пробирки поставили под сомнение все биологические эксперименты
Известный белок устраняет боль в восемь раз эффективнее морфина
Расширение белковой вселенной продолжается
Найдена "ахиллесова пята" малярийного паразита
Уточнен механизм работы натрий-калиевого насоса
Рентгеновский лазер в борьбе с сонной болезнью
Раскрыта структура «фермента старения»
Лекарства без металлов
Создан прототип биологического компьютера
Найден способ избежать передачи генетических заболеваний по наследству
Деревья с генами кролика ускоряют очистку почвы
Найден клеточный механизм развития астматического приступа
Ученые вылечили мышей от цирроза печени
Выявлен ключевой фактор стабильности белков
Управление синтезом тРНК может помочь в лечении раковых заболеваний
Открыт новый способ прочтения генетического алфавита
Обнаружен недостающий этап формирования живых организмов
Программа перестройки генома записана в РНК
Российские ученые "научили" белки собирать наночастицы
Десять важнейших открытий 2007 года. Версия журнала «Science»
Найден главный белок, управляющий формированием памяти
3D-нанозонды творят чудеса
Открыт новый принцип действия антибиотиков
Почти все человеческие гены кодируют более одного белка
Кишечные бактерии защищают от диабета
Зажигательные наноснаряды поражают опухолевые клетки
Дарвиновская эволюция без участия генов
Американские ученые "подсветили" возбудителей туберкулеза
Микрочип выявляет раковые клетки в крови
Открыт новый механизм взаимодействия клеток
Конкурс инновационных проектов в области медицины и биотехнологии
Клетки организма общаются с помощью посланий, упакованных в микровезикулы
На глубине 1626 м под уровнем морского дна обнаружена богатая микробная жизнь
Нобелевская премия по химии - 2008
Год перепрограммированных клеток
Биологи создали клетки с искусственной генетической памятью
Тайна происхождения рибосом разгадана?
Перекомбинирование фрагментов белковых молекул — быстрый способ создания новых признаков
Гомологичные ДНК способны узнавать друг друга
Мыши-мутанты не становятся наркоманами
Рибозимы могут размножать друг друга
Хроническую боль будут лечить генной терапией

Новость Посмотреть архив